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We analyse the dynamics of small, rigid, dilute spherical particles in the far wake of
a bluff body under the assumption that the background flow field is approximated by
a periodic array of Stuart vortices that can be considered to be a regularization of the
von Kármán vortex street. Using geometric singular perturbation theory and numeri-
cal methods, we show that when inertia (measured by a dimensionless Stokes number)
is not too large, there is a periodic attractor in the phase space of the dynamical
system governing the particle motion. We argue that this provides a simple mechanism
to explain the unexpected ‘focusing’ effect that has been observed both numerically
and experimentally in the far-wake flow past a bluff body by Tang et al. (1992).
Their results show that over a range of Reynolds numbers and intermediate values of
the Stokes number, particles injected into the wake of a bluff body concentrate near
the edges of the vortex structures downstream, thus tending to ‘demix’ rather than
disperse homogeneously.

1. Introduction
The transport of small particles through wakes or mixing layers is a common

phenomenon found in many technological and natural flow systems, with applications
in such areas as power production and pollution control. The primary feature of both
of these types of fluid flows is their arrays of organized vortex structures. Thus, several
recent investigations have analysed particle dynamics in either analytically defined
or numerically generated vortical flows (Crowe, Troutt & Chung 1996; Crowe et al.
1995; Marcu & Meiburg 1996; Marcu, Meiberg & Newton 1995; Marcu, Meiberg &
Raju 1996; Martin & Meiburg 1994; Moore & Davis 1986; Tang et al. 1992; Tio,
Ganán-Calvo & Lasheras 1993a; Tio et al. 1993b; Wen et al. 1992).

In dilute wake flows, where the appropriate particle equations of motion are
Lagrangian and account for drag only, a particularly interesting effect that has been
observed both numerically and experimentally in the wake behind a bluff body over
a range of Reynolds numbers is ‘particle focusing’ (Tang et al. 1992; Crowe et al.
1995). This refers to the tendency of particles in a certain size range to ‘demix’ or
become concentrated (i.e. focused) in narrow bands near the peripheries of the vortex
structures that form downstream. This particular self-organizing particle dispersion
pattern is not seen in mixing layers, where vortex merging generally occurs (Crowe
et al. 1996). As pointed out in a number of studies (e.g. Maxey & Riley 1983; Martin
& Meiburg 1994), the key parameter here is the Stokes number St, which is the
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St = 0.01

St = 1.0

St = 10.0

Figure 1. Three numerical simulations of a two-dimensional laminar fluid flow around a square
cylinder illustrate the ‘particle-focusing’ phenomenon that occurs here at St = 1.

ratio of the aerodynamic response time of a particle to a characteristic flow time. A
small Stokes number implies that the particles essentially track with the fluid flow,
while a large Stokes number implies large inertial resistance to changes in the flow.
In other words, the magnitude of the dissipative drag on a particle in the flow is
proportional to the Stokes number. The ‘focusing’ effect has been observed to occur
at intermediate Stokes numbers of order 1, as shown in figure 1 (from Crowe et al.
1995). The visualizations here are streakline plots of particles injected with the local
flow velocity just downstream of the rear face of a square during the course of a
Navier–Stokes simulation of unsteady two-dimensional laminar flow at a Reynolds
number of 100 (Davis & Moore 1982; Davis, Moore & Purtell 1984). As can be seen,
the effect of Stokes number on these visualizations is quite striking.

By studying instantaneous streamline patterns at selected phases in vortex-shedding
cycles using a variety of flow visualization techniques, Perry, Chong & Lim (1982)
identified two different regimes in the flow behind a bluff body for a Reynolds number
on the order of 100. In the closest, the ‘near-wake’ region of a cylinder that starts from
rest, there is a cavity that starts closed but opens as the vortex shedding process sets
in behind the body. Once this happens, ‘instantaneous alleyways’ form connecting the
flow in the cavity with that downstream. More recent work by a number of groups, in
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particular Shariff, Pulliam & Ottino (1991), Sommerer, Ku & Gilreath (1996), Duan
& Wiggins (1997), and Sommerer, Ott & Tél (1997), shows that complex fluid mixing
takes place in the cavity directly behind the body. In fact, various measurements by
Sommerer et al. (1996) support the hypothesis that there is a ‘chaotic saddle’ (Ott &
Tél 1994) in this region. A little further downstream, in what Perry et al. call the ‘far
wake’, vortex shedding sets up a steady-state oscillation in the flow behind the bluff
body, with period equal to the time between formation of successive staggered pairs
of vortices. It is in this ‘far-wake’ regime that the ‘particle-focusing’ phenomenon has
been observed in numerical and experimental studies.

Motivated by Aref & Pomphrey’s (1982) and Aref’s (1983) result that, in general,
a system of more than three point vortices in an unbounded two-dimensional region
is chaotic, Tang et al. (1992) computed the correlation dimension dG (Grassberger
& Procaccia 1983) for particle dispersion as part of some inviscid discrete vortex
simulations of a plane wake flow downstream of a bluff body. They found that
dG = 1.40 for St = 0.01, dG = 1.00 for St = 1, and dG = 1.43 for St = 10. Thus,
they found a fractal correlation dimension for values of the Stokes number far from
unity. However, at least for larger-scale features of the particle flows, they found a
non-fractal correlation dimension of one when the Stokes number is order one and the
‘focusing’ effect is most pronounced. This suggests the presence of a one-dimensional
attractor in the dynamical system governing the particle motion. Notwithstanding the
complicated fluid kinematics in the ‘near-wake’ regime, such an attractor is typically
not associated with chaotic dynamics. The purpose of this paper is to show, in as
simple a setting as possible, that for values of the Stokes number that are not too
large, such an attractor is to be expected in the dynamical system of the particles in
the ‘far-wake’ vortex street region. Thus, this provides a plausible explanation for the
observed focusing effect in the wake of a bluff body.

2. Formulation
We will investigate particle focusing by means of a perturbation analysis of particle

dynamics in a simple model of a plane wake flow, with emphasis on a discussion
of dispersion. The perturbation parameter, ε, is a coefficient that is smaller than but
directly proportional to the Stokes number St. The analysis we present here follows
the approach used in the related study of Rubin, Jones & Maxey (1995) of particle
motion in an analytically defined cellular flow field.

As is clear from some of the photographs in Perry et al. (1982) (figures 6(a)
and 7), for Reynolds numbers that are of the order of 100, the regular vortex
pattern in the far wake persists downstream a distance of many vortex spac-
ings, so that it is approximately periodic in space as well as time over a signif-
icant distance. (Additionally, see the visualizations of experimental laminar wakes
in Van Dyke (1982), figures 94, 95, 96 and 98; in particular, note the uniform
vortex spacing in these figures.) Thus, at relatively low Reynolds number, even
though actual wake flows will have differing characteristics due to variations in
flow parameters, von Kármán’s vortex street, a mathematical idealization in which
staggered point vortices move at constant speed and separation without the lat-
eral spreading and eventual breakup seen in actual wake flows (see e.g. Lamb
1932; Milne-Thomson 1968), is an acceptable approximation to the vortex pattern
observed in laminar wake flows past bluff bodies (also see Milne-Thomson 1968,
Saffman & Schatzman 1981 and Saffman 1995). For this reason, the flow field model
we employ for the far-wake vortex street behind a bluff body is a regularization of
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the von Kármán vortex street. Our modification of the von Kármán street, which is
presented in § 3, follows Stuart’s (1967) regularization of a single row of vortices. As
far as we know, this regularization was first employed in a particle study by Meiburg
& Newton (1991), who investigated the motion of passive particles (i.e. without in-
ertia) in a row of point vortices that evolved in time due to viscosity. Subsequently,
Tio and co-workers (1993 a,b) performed studies of particle dynamics as a function
of several parameters in a periodic row of Stuart vortices. By including the effects
of gravity, Tio et al. found interesting bifurcations to periodic oscillations of various
amplitudes in their model. More recently, using an analysis similar to that presented
here, a related model has been studied by Haffner (1995) using geometric singular
perturbation theory in an analysis similar to that presented here.

In § 4, we begin our investigation of dilute particle motion in the analytically defined
vortex street flow field. A centre manifold construction, based on Fenichel’s geometric
singular perturbation theory (Fenichel 1979; Jones 1995; Wiggins 1994), is used to
show that after an initial transient behaviour, the four-dimensional position–velocity
phase flow of the system reduces to what is essentially a two-dimensional motion
on a cylinder. This useful mathematical result allows us to conclude immediately
that an attractor with fractal dimension is not possible in this situation. The centre
manifold reduction also allows us to approximate the motion of dilute particles by the
motions of corresponding material points in a small perturbation of the regularized
von Kármán street vector field in an easily visualized two-dimensional phase space.
This is the subject of § 5, where the particle motion on the centre manifold is studied
using numerical methods. Such an analysis, which would be extremely difficult to
perform in the original four-dimensional phase space, provides much more detailed
information about the particle motion than can be obtained by direct numerical
simulation of the original system of equations (Davis & Moore 1982; Davis et al.
1984). In particular, the qualitative features of the flow on the two-dimensional centre
manifold can be studied in detail, including properties of any critical points and the
domains of attraction of any attractors in the system.

Our analysis in § 5 supports the hypothesis that the focusing of dilute particles in
laminar wake flows past a bluff body is the result of non-chaotic dissipative evolution
to a one-dimensional attractor that occurs on several different time scales. The flow
field behind the bluff body is approximated in the far wake by a velocity field that
is periodic in time with the vortex-shedding period, and periodic in space with the
vortex-spacing period. In coordinates that move at the velocity of this associated
regularized von Kármán street, particles are initially attracted very rapidly to a centre
manifold on an order ε−1 time scale. After this initial transient behaviour, the motion
of each particle is close to the motion of a corresponding material point in the centre
manifold. The resulting behaviour can be visualized as the motion of material points
in a two-dimensional configuration space for a time-independent, spatially periodic
flow that is a small perturbation of the original von Kármán vortex street flow. Thus,
according to our model, the essential particle behaviour is governed by a dissipative,
autonomous vector field that is periodic in the coordinate parallel to the motion of
the street. For values of ε that are not too large, particles that start inside each vortex
region spin out (in opposite directions because the vortices alternate in sense) at a
rate that depends on the size of ε, and then enter the region of an undulating jet
between the vortices, corresponding to what Perry et al. (1982) call an ‘instantaneous
alleyway’. For ε . 0.25, there is a unique periodic solution within the region of
the jet corresponding to a balance between opposing inertial and dissipative effects.
The periodic undulating orbit attracts the particles on a slower time scale that also
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depends on ε. For ε ≈ 0.25, a bifurcation takes place in the qualitative behaviour of
the perturbed two-dimensional wake flow. There is no longer an undulating jet region,
and the particles are ejected from the street entirely, thus eliminating the periodic
attractor. Therefore, rather than a complex bifurcation sequence as a function of
Stokes number as Tio et al. (1993a) have found in their study of particle motion
in a single row of Stuart vortices, a periodic attractor of approximately constant
maximum amplitude exists for Stokes numbers that are not too large. This attractor
simply ceases to exist beyond a critical Stokes number.

We argue that, because the flow field in the far wake is well-approximated by
a periodic flow field similar to the one we analyse, the same type of attracting
mechanism will exist in a real wake flow. Since a vortex street behind a bluff body
does not persist indefinitely in the far wake of a real flow, it follows that there
is a range of intermediate values of St, neither too small nor too large, for which
the particle-focusing effect is observed either experimentally or numerically. For this
range of intermediate values of St (or ε), particles spin out to the attractor within the
coherent far-wake region and thus are clearly identifiable as being focused. We also
point out in § 5 that this effect is most pronounced when the Stokes number is order
one. Concluding remarks are given in the final section.

3. Background flow field
The von Kármán vortex street (see e.g. Lamb 1932 or Milne-Thomson 1968)

consists of two parallel staggered infinite rows of counter-rotating point vortices of
strength κ. The vortex centres in each row are distance a apart, and the two rows are
separated by distance b. The rows are assumed to lie parallel to the y1-axis, with the
upper row at y2 = b/2 with strength κ, and the lower row at y2 = −b/2 with strength
−κ. It can be shown (Milne-Thomson 1968) that both rows advance in the positive
y1-direction at speed

c1 =
κπ

a
tanh

πb

a
. (1)

If a vortex on the upper row lies at (0, b/2) at t = 0, the von Kármán vortex street
can be defined by the stream function (see e.g. Milne-Thomson 1968)

ψ(y1, y2, t) = 1
2
κ

{
ln

[
1
2

cosh

(
2π
(
y2 − b/2)
a

)
− 1

2
cos

(
2π (y1 − c1 t)

a

)]

− ln

[
1
2

cosh

(
2π
(
y2 + b/2

)
a

)
+ 1

2
cos

(
2π (y1 − c1 t)
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)]}
, (2)

and the associated time-dependent velocity field is given by

u(y, t) = (u1(y1, y2, t), u2(y1, y2, t)) = (−∂ψ/∂y2, ∂ψ/∂y1). (3)

A well-known difficulty with using either (2) or (3) in numerical simulations is the
presence of singularities at the vortex centres. In the present study, we will regularize
the von Kármán model by following Meiburg & Newton (1991), who studied the
effects of viscous decay on the motion of passive particles in a single row of corotating
vortices using a model based on Stuart’s (1967) one-parameter family of solutions of
the Euler equations in two dimensions (also see Tio et al. 1993b; Marcu & Meiburg
1996; Marcu 1996; Haffner 1995). Thus, the stream function at t = 0 of a periodic
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array of point vortices is modified by introducing a parameter K that controls the
distribution of vorticity,

ψ̃(y1, y2) =
aU∞
2π

ln

[
cosh

(
2π y2

a

)
−K cos

(
2π y1

a

)]
. (4)

Here, U∞ is the speed of the free stream, a is the spacing between adjacent vortices,
and 0 6 K 6 1. Stuart (1967) has shown that ψ̃ satisfies the inviscid vorticity equation
∇2ψ = ω(ψ), where the vorticity is given by

ω (ψ̃) =
2πU∞
a

(
1−K2

)
exp

(−Kπψ̃
aU∞

)
. (5)

When K = 0, the motion associated with (4) reduces to a hyperbolic tangent shear
layer, whereas when K = 1, the associated motion becomes a periodic array of point
vortices.

Similarly, we modify the stream function (2) by introducing a parameter K ,
0 6 K 6 1,

ψK(y1, y2, t) = 1
2
κ
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)
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a
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. (6)

Each row moves in the positive y1-direction with speed

cK =
κπ sinh

(
2πb/a

)
a
[
cosh

(
2πb/a

)
+K

] , (7)

that approaches equation (1) as K → 1. For K = 0 the motion reduces to a horizontal
shear layer defined by a difference of hyperbolic tangents in y2, while for K = 1 the
model again becomes the von Kármán vortex street with two periodic rows of point
vortices. We note that, because the two-dimensional Euler equations are nonlinear,
the associated flow corresponding to the superposition of two regularized counter-
rotating rows of vortices is no longer a one-parameter family of solutions of these
equations.

We now non-dimensionalize lengths by half the vertical vortex spacing, b/2, and
time by the length scale divided by the speed of the street, b/(2cK), retaining the same
notation. This gives the dimensionless stream function

ψK(y1, y2, t) =
a

πb
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)
+K

]
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)
×
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1
2

cosh
πb

a
(y2 − 1)− 1

2
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]
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2
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(y1 − t)

]}
. (8)

For specificity, we assume in what follows that the ratio b/a is determined by
von Kármán’s vortex spacing (see e.g. Milne-Thomson 1968),

cosh πb/a =
√

2, (9)
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so that the speed of the street (7) is given by

cK =
2
√

2 κ π

a (3 +K)
. (10)

Transforming to coordinates that move horizontally at the (dimensionless) vortex
velocity,

ξ1 = y1 − t, ξ2 = y2, (11)

the stream function of the fluid flow can be written in the autonomous form (i.e. with
no explicit dependence on time; see e.g. Ottino 1989),

ΨK(ξ1, ξ2) =

√
2 (3 +K)

4α
{ln [cosh α (ξ2 − 1)−K cos αξ1]

− ln [cosh α (ξ2 + 1) +K cos αξ1]}+ ξ2, (12)

where

α = cosh−1
√

2. (13)

In the moving frame (11), the vortices are stationary relative to a free stream moving
to the left at dimensionless speed one.

Thus, the background vortex flow field is defined by the time-independent Hamil-
tonian

HK(ξ1, ξ2) = −ΨK(ξ1, ξ2), (14)

so that the streamlines of the flow correspond to orbits (i.e. pathlines) of solutions of
the corresponding Hamiltonian equations of motion. In more detail, the fluid velocity
is given by

−∂ΨK

∂ξ2

(ξ1, ξ2) = UK(ξ1, ξ2), (15)

∂ΨK

∂ξ1

(ξ1, ξ2) = VK(ξ1, ξ2), (16)

where

UK(ξ1, ξ2) =

√
2 (3 +K)

4

( − sinh α (ξ2 − 1)

cosh α (ξ2 − 1)−K cos αξ1

+
sinh α (ξ2 + 1)

cosh α (ξ2 + 1) +K cos αξ1

)
− 1, (17)

VK(ξ1, ξ2) =

√
2 (3 +K)

4

(
K sin αξ1

cosh α (ξ2 − 1)−K cos αξ1

+
K sin αξ1

cosh α (ξ2 + 1) +K cos αξ1

)
. (18)

Thus, the relevant autonomous Hamiltonian system for the background flow field is

dξ1

dt
=
∂HK

∂ξ2

(ξ1, ξ2) = UK(ξ1, ξ2), (19)

dξ2

dt
= −∂HK

∂ξ1

(ξ1, ξ2) = VK(ξ1, ξ2). (20)

For 0 < K 6 1, the equilibrium points of the system (19)–(20) on each row consist
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Figure 2. Level curves of ΨK that pass through the saddle equilibrium points for
(a) K = 0.25, (b) 0.2991, and (c) 0.35.

of centres (saddles) separated by saddles (centres) at integral (integral plus one half)
values of ξ1 on the upper (lower) row. Each vortex centre is surrounded by closed
periodic solutions. However, the qualitative properties of the cellular structure created
by the vortex rows change at a value of K approximately equal to 0.3. This is shown
in figure 2, where the separatrices, i.e. the level curves of ΨK that pass through the
saddle points, are plotted for K = 0.25, 0.2991, and 0.35. For values of K < 0.2991,
there is a jet moving to the right between two rows of ‘Kelvin cat eyes’, so that each
vortex is isolated from the others by a pair of separatrices. Streamlines corresponding
to K = 0.25 are depicted in figure 3. For 0.3 < K 6 1, however, the interaction of the
two rows is strong enough that the flow field takes on the characteristics indicated
in figure 4, which gives streamlines corresponding to K = 0.99. Each vortex is now
isolated from the others by a single separatrix, and there is a spatially periodic jet
moving to the left that undulates between and around adjacent vortices. Notice the
close similarity of the case K = 0.99 to the case of the unmodified von Kármán street
(K = 1), shown in figure 5. Thus, whenever it is necessary to specify a value of K , we
will choose K = 0.99.

In order to interpret the results in the remainder of the paper, it is helpful, following
Perry et al. (1982), to view the background flow field with respect to three different
observers. First, suppose the vortices move to the left at speed cK (dimensionless
speed 1) relative to a free stream that also moves to the left at a speed of U∞
(dimensionless speed U∗ = U∞/cK > 1). Then, with respect to an observer moving
with the free stream, the vortices move to the right at a dimensionless speed of one,
with a time-dependent velocity flow field defined by the potential (8) in the moving
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Figure 3. Streamlines of the regularized von Kármán street from the point of view of an observer
moving with the vortices for K = 0.25. Upper row of ‘Kelvin cat eyes’ consists of vortices rotating
in a counterclockwise sense, while those in the lower row rotate clockwise. Flow outside the vortex
region is to the left, while a jet between the rows moves to the right.

Figure 4. Streamlines of the regularized von Kármán street (K = 0.99) from the point of view
of an observer moving with the vortices. Each vortex is now isolated from the others by a single
separatrix. The free stream moves to the left at a (dimensionless) speed of 1, while the jet in the
central region now also moves to the left.

y1, y2 coordinates. The streamlines at t = 0 are given in figure 6. As discussed by Perry
et al. (1982), this flow pattern is often mistakenly described as a representation of the
flow with respect to an observer moving with the vortices (see e.g. the caption to figure
98 in Van Dyke (1982)). We have already discussed the view as seen by an observer
moving with the vortices and thus slower than the free stream. The background flow
field is autonomous, and the free stream moves to the left at a dimensionless speed
equal to 1 (see figure 4). Finally, assume for simplicity that U∗ > 2. Then to an
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Figure 5. Streamlines of the unmodified von Kármán street (K = 1) from the point of view of an
observer moving with the vortices. Note the close similarity to the case K = 0.99 in figure 4.

observer moving to the left at a dimensionless speed of U∗ − 2 and thus slower than
both the free stream and the street, the free stream appears to move to the left at a
speed of two, while the vortices appear to move to the left at a speed of one. The
streamlines at t = 0 in this non-autonomous case are depicted in figure 7, which
corresponds to figure 5 (f ) in Perry et al. (1982) rotated by 180◦. This instantaneous
representation of the flow field is often associated with the von Kármán vortex street
in the far wake of a flow past a bluff body, viewed by an observer who is stationary
with respect to the body (see e.g. figure 7 (a) in Perry et al. (1982) and figures 94–96
in Van Dyke (1982)). In our analysis starting in the next section, we take the point
of view of an observer moving with the vortices, because only in these coordinates is
the background flow field autonomous.

Because the autonomous system (19)–(20) is periodic in ξ1 with period 2π/α =
2p∗ = 7.129, where p∗ = 3.564 is the horizontal distance between vortex centres in
adjacent rows, values of ξ1 that differ by an integer multiple of this period can be
identified. Thus, the phase space C of this system can be considered to be the cylinder
ξ1 mod 2p∗. As pointed out by Andronov, Witt & Khaikin (1966), two different types
of periodic orbit are possible on a phase cylinder. A periodic solution of the first
kind encircles an equilibrium point on the cylinder, while a periodic solution of the
second kind encircles the cylinder itself. As is shown below, attraction by a limit cycle
of the second kind plays an important role in our analysis of particle dispersion.
Keeping this in mind, for convenience we always unfold the cylinder and depict the
phase portraits in the plane. In the next section, we discuss the equations of motion
of small particles in the regularized von Kármán vortex street. What we will show is
that, for Stokes numbers that are not too large, after an initial transient behaviour,
the motion of a particle in the assumed background flow field is controlled by the
motion of a corresponding material point in a velocity field that is given by a small
dissipative perturbation of the Hamiltonian field in (19)–(20). It will be shown in § 5
that one effect of this dissipation is to break the respective separatrices that isolate
individual vortices and the street from the surrounding flow in the far field.
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Figure 6. Streamlines at t = 0 of the regularized von Kármán street (K = 0.99) from the point of
view of an observer moving with the free stream. The street is moving to the right at a (dimensionless)
speed of 1.

Figure 7. Streamlines at t = 0 of the regularized von Kármán street (K = 0.99) from the point of
view of an observer moving slower than both the free stream and the street. The street is moving
to the left at a speed of 1, and the free stream is moving to the left at a speed of 2.

4. Particle equations of motion
Since Stokes drag is the only force considered here (in addition to inertia), the

dimensional equations of motion of a small, rigid, dilute spherical particle in the
regularized von Kármán vortex-street flow field described above are given by

dy

dt
= v, (21)
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Figure 8. Orbits corresponding to three different sets of initial conditions, (ξ1, ξ2) = (0.0, 2.0),
(0.5− p∗, −1.0), (−0.2− 2p∗, 1.0), with (a) ε = 0.05, (b) ε = 0.15, and (c) ε = 0.25. In (a), two orbits
asymptotically approach a limit cycle of the second kind, while the third orbit exits the region of
the vortex street; in (b), a different pair of orbits approaches a limit cycle of the second kind, while
the other orbit exits the street region; in (c), all orbits exit the vortex region.

dv

dt
=

18µ

ρpd 2
p

[u (y, t)− v] , (22)

where y = (y1, y2) denotes the Cartesian coordinates of the particle in a reference
system that is stationary with respect to the free stream, ρp is the particle density,
dp is the particle diameter, µ is the viscosity of the surrounding fluid, v = (v1, v2)
is the particle velocity, and u(y, t) = (u1(y1, y2, t), u2(y1, y2, t)) is the fluid velocity
determined by the stream function ψK (equation (6)).

In the dimensionless coordinates ξ = (ξ1, ξ2) (equation (11)) that move at the speed
of the vortices relative to the y coordinate system, the particle equations of motion
(21)–(22) can be written as an autonomous system of four first-order scalar equations,

dξ1

dt
= η1, (23)

dξ2

dt
= η2, (24)

dη1

dt
=

1

ε
[UK(ξ1, ξ2)− η1] , (25)

dη2

dt
=

1

ε
[VK(ξ1, ξ2)− η2] . (26)

Here, UK(ξ) and VK(ξ) are defined in (17) and (18), respectively, and the parameter
ε is a Stokes number defined by

ε =
ρpd

2
p cK

9µb
. (27)
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Note that the definition of ε is based on the vortex street velocity (7) instead of the
larger free-stream velocity U∞ employed in the usual definition of Stokes number St
in actual wake flows (Tang et al. 1992). Thus,

St =
U∞
cK

ε, (28)

so that phenomena that depend on St will occur at values of ε that are smaller than
the Stokes numbers in the actual physical systems that we are modelling. In this
paper, we are interested in the case when 0 < ε� 1.

Returning to the y coordinate system, non-dimensionalized as before, suppose that
the initial conditions for a particle are given at time t = 0 by

y0 = (y0
1 , y

0
2), v0 = (v0

1 , v
0
2). (29)

Then it follows that, in the ξ coordinate system,

ξ0 = (y0
1 , y

0
2), η0 = (v0

1 − 1, v0
2). (30)

Defining a new time scale τ = t/ε in terms of the small perturbation parameter,
the slow system (23)–(26) is transformed on the τ time scale into the fast system
(sometimes called the inner equations),

dξ1

dτ
= ε η1, (31)

dξ2

dτ
= ε η2, (32)

dη1

dτ
= UK(ξ1, ξ2)− η1, (33)

dη2

dτ
= VK(ξ1, ξ2)− η2, (34)

which is non-singular in the limit ε→ 0. By Fenichel’s (1971, 1979) geometric singular
perturbation theory (also see Haffner 1995; Jones 1995; Rubin et al. 1995; Wiggins
1994), phase trajectories of the system (23)–(26) are attracted exponentially rapidly
to a two-dimensional centre manifold

Cε = {(ξ1, ξ2, η1, η2) : −∞ < ξ1 < ∞, |ξ2| 6 β,
η1 = UK(ξ1, ξ2) + h(ξ1, ξ2, ε), η2 = VK(ξ1, ξ2) + k(ξ1, ξ2, ε)} ,

}
(35)

i.e. a smooth surface, called the slow manifold. This is 2p∗-periodic in ξ1, so that it can
be interpreted as a cylinder that is a smooth perturbation of C (with |ξ2| 6 β). Here,
β is a constant that is independent of the Stokes number and sufficiently large to
include all points of interest. Furthermore, Cε is locally invariant in the phase space
of the fast system. This means there is a neighbourhood U of Cε with the property
that the trajectory through each q in Cε cannot leave Cε without also leaving U, i.e.
for as long as the trajectory remains in U it lies on Cε. (A trajectory can exit through
the boundary of Cε in (forward or backward) finite time.) In addition, Fenichel (1979)
showed that each solution p(t) of (23)–(26) that enters U is ‘connected’ to a solution
q(t) on the slow manifold in the sense that the distance between the two trajectories
approaches zero at an exponential rate, as long as the latter solution remains on Cε.
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Substitution of Cε into the fast system decouples the first two equations of system
(31)–(34) from the latter two,

dξ1

dτ
= ε [UK(ξ1, ξ2) + h(ξ1, ξ2, ε)] , (36)

dξ2

dτ
= ε [VK(ξ1, ξ2) + k(ξ1, ξ2, ε)] . (37)

On the slow t time scale, this reduces to a regular perturbation of the streamline
equations (19)–(20),

dξ1

dt
= UK(ξ1, ξ2) + h(ξ1, ξ2, ε), (38)

dξ2

dt
= VK(ξ1, ξ2) + k(ξ1, ξ2, ε). (39)

It also follows from Fenichel’s theory that the O(ε) terms h and k may be expanded
asymptotically in ε to any order n,

h(ξ1, ξ2, ε) =

n∑
j=1

εjhj(ξ1, ξ2) + O(εn+1), (40)

k(ξ1, ξ2, ε) =

n∑
j=1

εjkj(ξ1, ξ2) + O(εn+1), (41)

with hj(ξ1 + 2p∗, ξ2) = hj(ξ1, ξ2), kj(ξ1 + 2p∗, ξ2) = kj(ξ1, ξ2), j = 1, 2, . . . , n.
Coefficients in the expansions (40) and (41) can be computed successively as follows.

By local invariance,

dη1

dτ
=
∂UK

∂ξ1

dξ1

dτ
+
∂UK

∂ξ2

dξ2

dτ
+
∂h

∂ξ1

dξ1

dτ
+
∂h

∂ξ2

dξ2

dτ
. (42)

Using (33), (36), (37), (40), (41), and (42),

dη1

dτ
= UK − η1 = −h = −εh1 − ε2h2 − · · · − εnhn + O(εn+1)

=
∂UK

∂ξ1

dξ1

dτ
+
∂UK

∂ξ2

dξ2

dτ
+
∂h

∂ξ1

dξ1

dτ
+
∂h

∂ξ2

dξ2

dτ

= ε

[
∂UK

∂ξ1

+ ε
∂h1

∂ξ1

+ ε2 ∂h2

∂ξ1

+ · · ·+ O(εn+1)

] [
UK + εh1 + ε2h2 + · · ·+ O(εn+1)

]
+ε

[
∂UK

∂ξ2

+ ε
∂h1

∂ξ2

+ ε2 ∂h2

∂ξ2

+ · · ·+ O(εn+1)

] [
VK + εk1 + ε2k2 + · · ·+ O(εn+1)

]
. (43)

Similarly,

dη2

dτ
=
∂VK

∂ξ1

dξ1

dτ
+
∂VK

∂ξ2

dξ2

dτ
+
∂k

∂ξ1

dξ1

dτ
+
∂k

∂ξ2

dξ2

dτ
. (44)
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Using (34), (36), (37), (40), (41), and (44),

dη2

dτ
= VK − η2 = −k = −εk1 − ε2k2 − · · · − εnkn + O(εn+1)

=
∂VK

∂ξ1

dξ1

dτ
+
∂VK

∂ξ2

dξ2

dτ
+
∂k

∂ξ1

dξ1

dτ
+
∂k

∂ξ2

dξ2

dτ

= ε

[
∂VK

∂ξ1

+ ε
∂k1

∂ξ1

+ ε2 ∂k2

∂ξ1

+ · · ·+ O(εn+1)

] [
UK + εh1 + ε2h2 + · · ·+ O(εn+1)

]
+ε

[
∂VK

∂ξ2

+ ε
∂k1

∂ξ2

+ ε2 ∂k2

∂ξ2

+ · · ·+ O(εn+1)

] [
VK + εk1 + ε2k2 + · · ·+ O(εn+1)

]
.

(45)

Collecting terms of the same order in ε, it follows that

h1 = −
[
UK

∂UK

∂ξ1

+ VK
∂UK

∂ξ2

]
, (46)

h2 = −
[
h1

∂UK

∂ξ1

+ k1

∂UK

∂ξ2

+UK

∂h1

∂ξ1

+ VK
∂h1

∂ξ2

]
, (47)

· · ·
hn = −

[
hn−1

∂UK

∂ξ1

+ kn−1

∂UK

∂ξ2

+UK

∂hn−1

∂ξ1

+ VK
∂hn−1

∂ξ2

+

n−2∑
j=1

hn−1−j
∂hj

∂ξ1

+

n−2∑
j=1

kn−1−j
∂hj

∂ξ2

]
, (48)

and

k1 = −
[
UK

∂VK

∂ξ1

+ VK
∂VK

∂ξ2

]
, (49)

k2 = −
[
h1

∂VK

∂ξ1

+ k1

∂VK

∂ξ2

+UK

∂k1

∂ξ1

+ VK
∂k1

∂ξ2

]
, (50)

· · ·
kn = −

[
hn−1

∂VK

∂ξ1

+ kn−1

∂VK

∂ξ2

+UK

∂kn−1

∂ξ1

+ VK
∂kn−1

∂ξ2

+

n−2∑
j=1

hn−1−j
∂kj

∂ξ1

+

n−2∑
j=1

kn−1−j
∂kj

∂ξ2

]
. (51)

In the next section, we will discuss the qualitative behaviour of solutions of the
perturbed two-dimensional system (38)–(39).

5. Particle motion on the slow manifold
In the previous section, we found that, for sufficiently small ε, after a rapid initial

transient motion towards the slow manifold Cε, the behaviour of particles in the plane
wake flow subject to Stokes drag is controlled by the behaviour of corresponding
material points (we also refer to these as particles in this section) with trajectories
on the slow manifold. One immediate conclusion that can be drawn from this fact
is that, for 0 < ε � 1, no chaotic dynamics can occur in the system (23)–(26) by
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application of the Poincaré–Bendixon Theorem (see e.g. Wiggins 1990). Henceforth,
we will restrict our attention to the behaviour on Cε and study the perturbed system
(38)–(39) on the slow manifold for K = 0.99. Because we are interested mainly in
qualitative features of the trajectories on the slow manifold, we will retain only the
first two terms in the perturbation expansion, i.e. set n = 2 in (40)–(41), and thus take

dξ1

dt
= UK(ξ1, ξ2) + εh1(ξ1, ξ2) + ε2h2(ξ1, ξ2), (52)

dξ2

dt
= VK(ξ1, ξ2) + εk1(ξ1, ξ2) + ε2k2(ξ1, ξ2), (53)

as an approximation to the vector field on the slow manifold. Explicit formulas for
the perturbation terms have been obtained using symbolic computation software.

When ε = 0, the equations on the slow manifold reduce to the ‘outer’ equations
(19)–(20). Representative streamlines of this unperturbed street of Stuart vortices
with K = 0.99 are shown in figure 4. As is clear from the figure, essentially three
different types of periodic motion are possible in the unperturbed case. Particles
that start inside a separatrix containing a vortex move on a closed periodic orbit
of the first kind, in one of two directions. The direction of particle motion is
counterclockwise about vortices in the top row and clockwise in the lower row.
For particles that start outside the vortex region, motion is on a periodic solution
of the second kind to the left, becoming closer to rectilinear the further away
from the vortex street it gets. The most interesting periodic behaviour from the
point of view of particle focusing, however, occurs for particles that are located
in the jet that undulates through the vortices. This is because it is this type of
periodic motion of the second kind that we employ in order to explain the particle-
focusing behaviour that has been observed both in laboratory experiments (Tang
et al. 1992) and in numerical simulations of these experiments (Tang et al. 1992;
Crowe et al. 1995) (see figure 1). The question we address in what follows is: how
does the ε = 0 phase portrait given in figure 4 perturb for 0 < ε � 1? Our
approach to this problem is to study the qualitative behaviour of trajectories of the
approximate system of equations (52)–(53) using numerical methods. We will show
that for sufficiently small values of ε, there is an attracting limit cycle of the second
kind in the region of the central jet. As we will demonstrate, this non-fractal attractor
provides a mechanism for the focusing phenomenon observed by Tang et al. (1992).

It is easy to verify that the equilibrium points of the vector field on the slow
manifold are at the same locations as those for the unperturbed vortex street. In
particular, for the chosen vortex spacing (equation (9)), there is a saddle point at
(ξ1, ξ2) = (p∗, q∗) = (3.564, 2.052) and a vortex centre at (p∗,−1.000); locations of
the other equilibrium points can be found from these two. It is also straightforward
to check that the saddle points in the unperturbed flow remain saddle points in
the perturbed motion. However, the vortex centre points that are neutrally stable in
the unperturbed motion become unstable under the influence of the perturbations
introduced by particle inertia (i.e. centrifugal effects). This can be shown by linearizing
the vector field about a vortex centre point. Thus, under the perturbation induced
by particle inertia, the vortex centres become spiral sources, so that the qualitative
behaviour of the phase trajectories changes significantly under the influence of Stokes
drag.

The perturbed equations (52)–(53) were checked by verifying that particle trajec-
tories for values of ε between 0.001 and 0.25 as computed by numerical integrations
(utilizing the ODE solver package DEPAC (Shampine & Watts 1979)) of this approx-
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Figure 9. Incoming and outgoing ‘whiskers’ of the saddle point located at (−p∗, q∗) in the perturbed
motion, with (a) ε = 0.05, (b) ε = 0.15, (c) ε = 0.24 and (d) ε = 0.25. Dissipatation causes the
saddle-to-saddle connecting orbits in the unperturbed flow to break. Also, for some critical value
of ε between the last two cases, a bifurcation in the qualitative behaviour of the particle dynamics
takes place.

imate system agreed closely with solutions of the original system (23)–(26). Initial
particle velocities for the latter system were taken as the vortex street velocity, i.e. a
particle was initially stationary in the ξ, η phase space. It was found that, after an
initial transient deviation for larger ε due to the fact that particles in the original
system did not start exactly on the centre manifold Cε, corresponding curves of
particle position vs. time for the two solutions virtually overlay, indicating that the
approximate perturbation solution with n = 2 does, in fact, apply here over the
indicated range of the small parameter.

Several computer simulations were carried out in order to gain an understanding
of how the qualitative behaviour of the system (52)–(53) depends on ε. All of these
calculations were performed utilizing DEPAC. Figure 8 shows the results of numerical
simulations of (52)–(53) with ε = 0.05, 0.15, and 0.25, with the same three initial
values in each case, (ξ1, ξ2) = (0.000, 2.000), (0.500−p∗, −1.000), (−0.200−2p∗, 1.000).
As can be seen in the figure, all three orbits spiral outward from the vortex centre for
each value of ε. In (a), a pair of orbits asymptotically approaches a periodic attractor
in the system, while the third orbit exits the region of the vortex street. In figure 8(b),
a different pair of orbits approaches a periodic attractor more rapidly than in (a)
while the third exits the street region. In the terminology of Andronov et al. (1966),
in these first two cases there is an asymptotically stable limit cycle of the second kind
in the motion on the invariant manifold Cε. Finally, in (c), all three orbits exit the
vortex region and there is no longer an attractor in this region.

Figure 9 indicates how the qualitative behaviour of the perturbed system evolves
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Figure 10. Incoming and outgoing ‘whiskers’ of several adjacent saddle points in the perturbed
motion, with ε = 0.015, show the complexity of the domain of attraction of the limit cycle for very
small ε. Particles starting outside the narrow spiral asymptotically approach the limit cycle, whereas
those inside the narrow spiral escape.

with increasing ε. The figure was made by computing the two incoming and two out-
going ‘whiskers’, i.e. the ‘halves’ of the stable and unstable manifolds, respectively, of
the saddle point (−p∗, q∗) (see e.g. Wiggins 1990 for definitions), for ε = 0.05, 0.15, 0.24
and 0.25. It is clear that an important effect of the dissipation in the system is to
break the homoclinic and heteroclinic separatrices that, respectively, isolate individ-
ual vortices and connect adjacent saddle points in the unperturbed vortex street (see
figure 4). Note that, in all but the last case, the two stable whiskers originate at a
vortex centre in the lower row of the street. Figure 9(d) indicates that the qualitative
behaviour of the stable and unstable manifolds of the saddle points on the slow man-
ifold undergoes a bifurcation at a critical value of ε in the interval 0.24 < ε < 0.25
such that, for larger values of ε, the incoming whisker to the saddle point originates in
the adjacent vortex on the upper row rather than at a vortex point on the lower row.
This set of calculations was done by starting at the saddle point and integrating the
appropriate equation dξ1/dξ2 or dξ2/dξ1 for the trajectory, with the singularity in the
vector field at the saddle point removed by an application of L’Hospital’s rule. Once
the local invariant manifold was approximated, its endpoint was used as initial data
for equations (52)–(53), which were integrated either forward or backward in time, as
appropriate. In the case of the incoming whiskers of the saddle point that originate at
vortex centres, calculations were performed backwards in time and were terminated
when the trajectories arrived in a small neighbourhood of the vortex centre in order
to avoid excessive run times. This is why these two orbits do not always appear to
meet at a vortex centre in the set of figures we discuss next.

In figures 10–13 the same kind of data for ε = 0.015, 0.05, 0.15 and 0.25 have been
plotted by rotating and translating the invariant manifolds of a single saddle point
using the identities UK(ξ1+p∗,−ξ2)+h(ξ1+p∗,−ξ2) = UK(ξ1, ξ2)+h(ξ1, ξ2) and VK(ξ1+
p∗,−ξ2)+k(ξ1+p∗,−ξ2) = −VK(ξ1, ξ2)−k(ξ1, ξ2). These figures give a good idea of how
the domain of attraction of the limit cycle, i.e. the set of points q in Cε that approach
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Figure 11. Incoming and outgoing ‘whiskers’ of several adjacent saddle points in the perturbed
motion, with ε = 0.05, show that focusing already begins to occur after a particle has advanced by
a single period 2p∗ down the street.

the limit cycle as t → ∞, changes with increasing ε. The cases ε = 0.015 (figure 10)
and ε = 0.05 (figure 11) show how increasingly intertwined this domain of attraction,
which could be called the capture set, and its complement, which could be called the
escape set, become as ε decreases. In both figures, the capture set corresponds to points
starting outside the narrow spiral region originating at the vortex centre. This suggests,
but certainly does not prove, that as ε→ 0 there is a type of sensitive dependence on
initial conditions (see e.g. Arnold 1963; Neishtadt 1991) in the non-chaotic dynamical
system (38)–(39). Also note that, in the case of ε = 0.05 (figure 11), particle focusing,
i.e. close approach to the limit cycle, has already begun to occur by the time a particle
has advanced down the street by a single period 2p∗. This focusing is much more
pronounced after a single period in the case ε = 0.15 (figure 12). Also notice that
the central jet narrows rapidly with increasing ε, thus enhancing the focusing effect.
By the time that ε has increased to 0.25 (figure 13), a bifurcation in the qualitative
behaviour of the saddle point separatrices of the motion on the slow manifold has
taken place. Thus, since there is no longer an attractor in the system, no focusing can
occur although, as is evident from the figure, particles escape from the vortex region
along very narrow channels formed by the separatrices. Eventually, ε will become too
large for the results of the singular perturbation theory to apply.

A simple complementary explanation of the focusing phenomenon can also be given
based on centrifugal force considerations. In figures 14 and 15, particle spin-out times
from a vortex centre have been computed and plotted, utilizing (23)–(26), for various
values of ε in the interval 0.01 < ε < 0.50. The numerical integrations were carried out
by means of a simple method (Moore & Davis 1986) whereby the particle equations
are integrated exactly from one time step to the next assuming constant flow velocity,
a scheme that gives results virtually identical to DEPAC but is easier to use. Particles
were inserted with zero velocity at the indicated vortex centre in the upper row, and
the spin-out times it took for them to reach a circle (see figure 14) with radius equal
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Figure 12. Incoming and outgoing ‘whiskers’ of several adjacent saddle points in the perturbed
motion, with ε = 0.15. In this case, particles are already focused into a narrow jet before they
advance by a period down the vortex street.
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Figure 13. Incoming and outgoing ‘whiskers’ of several adjacent saddle points in the perturbed
motion, with ε = 0.25, show the impossibility of any orbits remaining in the vortex street region for
ε > 0.25, because a bifurcation in the qualitative behaviour of the separatrices of the saddle points
on the slow manifold has taken place.

to half the distance between the initial position and the closest vortex centres in the
lower row were calculated. The trajectories are shown in figure 14, while figure 15 is a
plot of the spin-out times as a function of ε. These times have been normalized with
respect to the time it would take for a vertical reference line in the fluid flow that is
travelling in the street direction but faster to move a distance equal to one horizontal
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Figure 14. Particle trajectories terminating at the dashed circle for discrete values of ε in the range
0.01 < ε < 0.50. Small circles indicate saddle points in the background flow field visualized by
vectors.

vortex spacing p∗ = 3.564. This is analogous to a characteristic passage time for the
downstream movement of vortices as they are shed from the rear of a bluff body, as
will become clear in later figures. For the results presented in figure 15, the reference
line is moving at four times the street velocity, a factor that has essentially no effect
on the nature of the results. The symbols in the figure represent the particle spin-out
times while the solid line is a curve fit with inverse dependence on ε, since the radial
force depends linearly on mass (i.e. ε). As can be seen, the normalized spin-out times,
Ts, increase to much greater than one as ε becomes much less than approximately
0.10. Thus, particles in this size range do not spin out to the vortex peripheries until
they are far downstream of the reference line, i.e. bluff body. Therefore, although
particle focusing could in principle eventually occur, in most realistic flows this would
be too far downstream for the wake to remain coherent. For ε & 0.15, the spin-out



22 T. J. Burns, R. W. Davis and E. F. Moore

24

20

16

12

8

4

0 0.1 0.2 0.3 0.4 0.5
ε

Ts

0.3596ε
–1

Figure 15. Normalized spin-out times (square symbols) of particles in
figure 14 as a function of ε.
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Figure 16. Streakline plot for ε = 0.01 in which a vertical line of length 2 representing the
rear face of a bluff body is moving at four times the street velocity to the right while eject-
ing particles at zero velocity in the moving frame. The solid line represents the limit cycle of
the system on the slow manifold, while the small circles denote saddle points in the background
flow field.

times become close to unity, and thus focusing occurs early in the far-wake region.
This corresponds to the focusing at Stokes numbers near one that has been previously
reported (Tang et al. 1992; Crowe et al. 1995). For ε � 1, however, particle inertial
effects are more important and dispersion occurs too rapidly for focusing to occur,
as can be seen from the bottom frame (St = 10.0) in figure 1. For very large Stokes
number (i.e. order 100), dispersion becomes negligible once again as particles are
simply convected downstream with little lateral motion (Tang et al. 1992; Crowe et
al. 1995). Note that the above physical description of the focusing process is entirely
consistent with the analysis of Druzhinin (1994) in which Stokes-number-dependent
particle concentration waves evolve in an axisymmetric vortex on a ε−1 time scale.

Figures 16 and 17 are streakline plots in which a vertical reference line of length 2
representing the rear face of a bluff body is moving at four times the street velocity to
the right while ejecting particles at zero velocity (approximately corresponding to the
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Figure 17. Streakline plot for ε = 0.20. The solid line represents the limit cycle of the system on
the slow manifold.
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Figure 18. Streakline plot, as in the preceding two figures, with ε = 0.015, showing that particles
eventually do spin out to the limit cycle even for small ε.

particle injection conditions in figure 1) in the moving frame. Note that this correctly
simulates the circulation pattern of vortices being shed alternately from the top and
the bottom of a bluff body moving with the street, but faster, in the +ξ1-direction.
The Strouhal number (non-dimensional frequency based on reference line length and
velocity relative to the street) of this shedding (two vortices shed) is independent
of line velocity and is simply the vortex spacing ratio b/a = 0.281 for line length
b = 2. This is approximately twice the value (based on free-stream velocity) typically
observed for laminar shedding from square cylinders (Davis & Moore 1982; Davis
et al. 1984). Finally it is noted that the definition of Stokes number St based on line
velocity relative to the street would be triple the value of ε employed here.

The solid line in figures 16 and 17 represents the limit cycle of the perturbation
solution and is thus the envelope (i.e. attractor) toward which particles should spiral
asymptotically as they move downstream through the vortex street. These figures are
thus intended to be reasonably analogous to the visualizations of the full Navier–
Stokes simulations depicted in figure 1. As can be seen, the particles with ε = 0.01
in figure 16 do not spin out to the limit cycle in the region of the far wake shown
here. At the larger ε of 0.20 in figure 17, spin-out times are much smaller and
focusing is clearly seen as the particles now concentrate in a thin region about the
limit cycle. This demonstrates conclusively that the focusing phenomenon observed
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in previous numerical and experimental investigations (Tang et al. 1992; Crowe et al.
1995) does in fact also occur in this simplified model problem for appropriate values
of ε. Figure 18 visualizes an extended wake region of the far wake for ε = 0.015 in
order to illustrate that the particles eventually do spin out to the attracting limit cycle
even at very small Stokes numbers.

6. Concluding remarks
To summarize, we have presented a perturbation study of the dynamics of small

particles subject to Stokes drag in the wake of a bluff body. The motivation for the
problem addressed here has been the interesting phenomenon of ‘particle focusing’.
Tang et al. (1992) observed that over a range of Reynolds numbers, dilute particles
injected into the flow behind a bluff body tend not to mix, as might be expected,
but rather to concentrate in narrow bands on the outer boundaries of the vortices
in the street that forms in the far wake. Based on our analysis, we have argued that
the presence of a periodic attractor in a simplified approximation of the dynamics
of dilute particles in the far wake provides a plausible mechanism for the observed
organized particle dynamics. This periodic attractor corresponds to a unique one-
dimensional curve in the ‘instantaneous alleyway’ that Perry et al. (1982) have shown
exists in the flow downstream from the bluff body. The analysis we have presented
makes clear that the attractor is present because of dissipative effects due to the
inertia of the particles in the flow. Thus, in the limiting case ε = 0 where there is
no Stokes drag, particles simply track the background flow field, and no attractor is
present in the dynamical system for the particles.

In order to formulate our simplified particle dynamics model, we have replaced
the background flow field in the far wake with respect to an observer moving with
the vortices by a spatially-periodic von Kármán vortex street, modified by Stuart’s
regularization of the singularities at the point-vortex centres. We have argued that,
for Reynolds numbers of the order of 100, this is a reasonable approximation over
a portion of the far wake downstream from a bluff body that includes at least sev-
eral vortices. Using ε as a small parameter, where ε is the Stokes number defined
by the street velocity rather than the larger Stokes number St defined with respect
to the free-stream velocity, we have applied Fenichel’s geometric singular pertur-
bation theory to study the dynamics of particles for which ε is not too large. We
have shown that, after an initial transient behaviour, the motion in four-dimensional
position–velocity phase space of a dilute particle is controlled by the motion of a
material point on a two-dimensional centre manifold that can be identified with a
cylinder. On this reduced-dimension centre manifold, the vector field that controls
the particle motion is a dissipative O(ε) perturbation of the Hamiltonian vector field
determined by the stream function of the regularized vortex street. By analysing the
behaviour of material points in the two-dimensional perturbed system numerically,
we have elucidated qualitative features (e.g. figures 8–17) of particle motion in the
original four-dimensional system that would have been difficult to establish by nu-
merical methods alone.

In particular, we have shown that, for ε not too large, two important effects of the
dissipation are to change the neutrally stable vortices into unstable sources, and to
break the respective separatrices that isolate the individual vortices in the unperturbed
regularized vortex street from each other and from the free stream. For ε less than
approximately 0.25, we have shown that, as a result of these dissipative effects, there
is a unique limit-cycle attractor in the region of the jet that undulates over and
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under adjacent vortices in the unperturbed street, and we have computed the spiral
structure of its domain of attraction. Furthermore, we have established that there is
a particle spin-out time scale inversely proportional to ε, and a rate of attraction
of particles toward the limit cycle that is directly proportional to ε. As a result, we
have shown that focusing is most likely to be observed in a given wake flow for
ε near 0.25, which typically corresponds to a Stokes number of the order of 1 in
a two-dimensional flow past a bluff body. Thus, our analysis provides a plausible
explanation for the ‘particle-focusing’ phenomenon that has been observed in both
laboratory experiments and numerical simulations (Tang et al. 1992; Crowe et al.
1995). Because the essential dynamics takes place on a two-dimensional phase space,
the focusing mechanism we have proposed has nothing to do with chaotic dynamics.
Finally, since small particles are often used to visualize wake flows, this study of the
effects of Stokes drag on the dynamics of small particles in wakes could also have
implications for flow visualization studies.
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providing us with a copy of Haffner’s (1995) unpublished paper. We would also like
to acknowledge the helpful comments of some anonymous referees.
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